SUMMA2020

 \odot

2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency

Industrial and Commercial Power and Power Conversion Systems – Energy Systems and Power Systems Engineering

Comparative Analysis of Electric Drives Control Systems Applied to Two-Phase Induction Motors

Oleg Kryukov, Stanimir Valtchev, Viktor Meshcheryakov, Aleksey Belousov

TSN-electro LLC, Nizhniy Novgorod, Russia University NOVA of Lisboan, CTS/FCT, Portugal;

Lipetsk State Technical University, Lipetsk, Russia;

November 11 - 13, 2020

SUMMa 2020

Introduction

The purpose of the research: the conducting of a comprehensive analysis of the most known concepts of control systems for two-phase induction motors, such as:

- Direct start;
- Scalar control systems for one phase control and two phases control;
- Systems with continuous and discontinuous space vector pulse width modulation;
- System with relay current regulators.

Research object – model of asymmetrical twophase induction motor from Matlab Simulink library, its parameters are

Nominal power, volt	age, and frequency [Pn(VA), Vn(Vrms), f(HZ)]
[.25*746 110 60]
Main winding stator	[Rs(ohm), Lls(H)]
[2.02 7.4e-3]	
Main winding rotor	[Rr'(ohm), Llr'(H)]
[4.12 5.6e-3]	
Main winding mutua	al inductance Lms(H)
0.1772	
Auxiliary winding s	tator [RS(ohm), LIS(H)]
[2.02 7.4e-3]	
Inertia, friction fact	or, pole pairs, turn ratio(aux/main) [J(kg.m^2), F(N.m.s), p, NS/Ns]
[0.0146 0 2 1]	

Comparable characteristics:

- mechanical characteristics;
- the shape of the rotor magnetic field;
- transient processes of phase currents;
- the number of switchings of the inverter switches per one second;
- Fast Furrier Analysis of phase currents (high harmonic content THD).

2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency — SUMMA2020

Description of the control algorithms: Direct start of TPIM

3

FFT analysis: THD are 0,31% and 0,28% for two phase currents.

- 1 Asymmetrical TPIM:
- a) Mechanical characteristic;
- b) Magnetic field;
- c) Phase currents.

1.5

2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency — SUMMA2020

Scalar control system of TPIM with two phases control

1 – Model of control system in Matlab Simulink

Based VSI frequency is 4 kHz;

•3300 switch commutations in 1 second;

•FFT analysis: THD are 1,15% and 1,84% for two phase currents.

2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency — SUMMA2020

0.2

0.4

flux_{ra}, Vs

0.8

0.6

Control system with TPIM one phase control

1 – Model of control system in Matlab Simulink

Based VSI frequency is 4 kHz;

1905 switch commutations in 1 second;

•FFT analysis: THD are 0,03% and 0,10% for two phase currents.

-5

Control system with SVPWM of TPIM

1 – Model of control system in Matlab Simulink

Based VSI frequency is 4 kHz;

-3580 switch commutations in 1 second in phase legs;

•4000 switch commutations in 1 second in common leg;

FFT analysis: THD are 1,65% and 4,10% for two phase currents.

Control system with Hybrid SVPWM of TPIM

1 – Timing block for dividing vector spare to spares of MinSVPWM and MaxSVPWM

Based VSI frequency is 4 kHz;

•2770 switch commutations in 1 second in phase legs;

1920 switch commutations in 1 second in common leg;

FFT analysis: THD are 1,35% and 3,37% for two phase currents.

2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency — SUMMA2020

Control system with RCR of TPIM

•5350 switch commutations in 1 second in phase legs and 400 switch commutations in 1 second in common leg during acceleration;

•4700 switch commutations in 1 second in phase legs and 100 switch commutations in 1 second in common leg during work with increased load;

FFT analysis: THD are 23,5% and 14,2% for two phase currents.

2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency — SUMMA2020

The results of the research

9

Type of TPIM control system	Scalar CS of two phases with carrier-based PWM	Scalar CS of one phase with carrier- based PWM	Continuous Space vector PWM	Hybrid Discontinuous SVPWM	CS with relay current regulators
Mechanical characteristic (max torque)	Small torque ripples, 18Nm	Damped oscillations, 18Nm	Damped oscillations, 7Nm	Damped oscillations, 7,5Nm	Small continuous ripples, 3,5Nm
Shape of rotor magnetic field	Circle, radius 0,65	Circle, radius 0,4	Ellipse, radiuses 0,35(q), 0,25 (d)	Ellipse, radiuses 0,35(q), 0,25(d)	Circle, radius 0,22
Phase currents transient process (max amplitude)	0,6s, 17A	0,5s, 22A	1s, 20A	1s, 20A	0,85s, 15A
Number of VSI switchings	3300 for 6 switches	1905 for 4 switches	3580 (4 switches) and 4000 (2 switches)	2770 (4 switches) and 1920 (2 switches)	4700 (4 switches) and 100 (2 switches)
High harmonic content of phase currents	1,15%, 1,84%	0,03%, 0,10%	1,65%, 4,10%	1,35%, 3,37%	23,5%, 14,2%

2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency — SUMMA2020

Conclusion. Possible applications of two-phase electric drive systems

Control system with space vector PWM

Control system with relay current regulators

10

Scalar control system of two phases with carrier-based PWM

Scalar control system of one phase with carrier-based PWM

2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency — SUMMA2020

Oleg Kryukov, Stanimir Valtchev, Viktor Meshcheryakov, Aleksey Belousov

TSN-electro LLC, N.Novgorod; University NOVA of Lisboan; Lipetsk State Technical University; <u>o.v.kryukov@mail.ru</u>, <u>ssv@fct.unl.pt</u>, <u>mesherek@stu.lipetsk.ru</u>, <u>011bas962@gmail.com</u>

2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency — SUMMA2020

11